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Abstract-This paper proposes a reduced complexity ordered 
statistics decoding (OSD) algorithm for linear block codes. With 
the received information, several most reliable positions in the 
ordered reliability sequence are prioritized as the validation 
band (VB). The Gaussian elimination (GE) is then performed 
to generate the systematic generator matrix of the code. In 
the process of re-encoding, only the test messages that satisfy 
the validation rule would be used to generate the codeword 
candidates, resulting in a low decoding complexity. The decoding 
error probability upper bound of the proposed OSD is further 
analyzed to characterize its performance-complexity trade ofT. 

Our simulation results show that the proposed OSD can signif­
icantly reduce the decoding complexity with a negligible loss in 
the decoding performance. 

Index Terms-linear block codes, maximum-likelihood decod­
ing, ordered statistics decoding, reduced complexity 

I. INTRODUCTION 

The realization of ultra-reliable low-latency communication 
(URLLC) requires the support of competent short-to-medium 
length channel codes. Recent research in short-to-medium 
length codes [1] has shown that ordered statistics decoding 
(OSD) of BCH codes can yield a performance that is closed 
to the finite length transmission limit [2]-[3]. In the OSD, 
the most reliable independent positions (MRIPs) will first be 
identified. Then, the test error patterns (TEPs) will be added 
to the MRIPs of a hard-decision received word to generate 
codeword candidates. Among all candidates, the most likely 
one will be selected as the decoding output. Despite its 
competency in decoding BCH codes, the OSD's exponential 
complexity remains a practical challenge. In particular, the 
number of TEPs increases exponentially with the decoding 
order, resulting in a high decoding complexity. It has also been 
realized that no information outside the MRIPs is utilized, 
leaving the decoding capability not fully exploited. In order 
to reduce the number of TEPs while maintaining the decod­
ing performance, several skipping rules for facilitating the 
identification of the unpromising TEPs were proposed in [4]­
[5]. Meanwhile, stopping rules for identifying the maximum 
likelihood (ML) codeword from the decoding output list were 
proposed in [6]-{7], the decoding can be terminated earlier, 
consequently. Segmentation discard rule was proposed in 
[8]. By segmenting the TEPs with reasonable boundaries, 
the frequency of checking the stopping rule can be reduced 
and the progressive segmented decoding can be realized. In 
order to use information outside the MRIPs and improve the 

decoding performance, the box-and-match algorithm (BMA) 
was proposed in [9]. In the BMA, information outside the 
MRIPs will first be stored in the memory space. It will then 
be further utilized to obtain additional performance gains. The 
iterative information set reduction (IISR) was proposed in 
[10]. By the iterative update of the most reliable information, 
decoding performance can be improved. The multiple infor­
mation sets generated by the randomly biased log-likelihood 
ratios (LLRs) was proposed in [11], further improving the 
OSD performance. However, most of the above mentioned 
approaches introduce the extra decoding complexity either in 
judging the ML codeword or in utilizing information outside 
the MRIPs. 

The proposed OSD is inspired by the fact that several most 
reliable positions in the ordered received sequence have an 
extremely high probability to be error-free. Hence, they can 
be prioritized as the validation band (VB) for generating the 
codeword candidates. After determining the length of VB, the 
Gaussian elimination (GE) will be performed subsequently 
to obtain the systematic generator matrix. Relatively reliable 
independent positions (RRIPs) can be determined accordingly. 
In the re-encoding process, only the test messages that satisfy 
the validation rule are utilized to generate the codeword 
candidates and the rest will be discarded. This assessment 
results in a low decoding complexity. Since the validation 
process is completed in the re-encoding process, the proposed 
OSD will not introduce additional decoding complexity and 
it is also implementation friendly. In order to achieve a 
better decoding complexity and performance trade off, this 
paper further characterizes the decoding error probability 
upper bound of the proposed OSD. Our simulation results 
will demonstrate the complexity advantage of the proposed 
complexity reducing OSD. 

II. PRELIMINARIES 

Let C(n, k) denote a binary linear block code, where n 
and k are the length and dimension of the code, respectively. 
Its generator matrix G is a k x n binary matrix written as 
G = [g1,92,···,Yn], where 9b92, ... ,gn are the column 
vectors of length k. Let f = (!I, /2, . . .  , fk) E IF� and 
� = (c1, c2, . . .  , en) E IF� denote the message vector and the 
codeword vector, respectively. The encoding can be described 
as � = l_ · G. Let us assume that a codeword � is transmitted 
by the use of binary phase shift keying (BPSK) modulation 
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as : 0 f-t 1; 1 f-t -1. The modulated symbol vector is 
;!';_ = (x1,x2, • • • ,xn) . where Xj E {-1, 1} , Vj. Over the 
additive white Gaussian noise (AWGN) channel, the received 
symbol vector can be denoted as r_ = (r1, r2 , ... , rn) E JRn. 
where 

(1) 

and Wj is the AWGN with zero mean and variance N0/2. Let 
Pr h I Cj = 0) and Pr ( r j I Cj = 1) denote channel observa­
tions of Cj, its received LLR is defined as 

L. = ln 
Pr(rj I Cj = 0). 

3 Pr(rj I Cj = 1) 

Accordingly, the hard-decision received word y 

. . .  , Yn) E lF� can be obtained as 
-

{0, if Li > 0; Yi = . 

1, If Lj ::; 0. 

(2) 

(3) 

Note that a greater ILi I indicates the received information 
of Cj is more reliable. Hence, reliability of the received 
information of all coded bits can be ordered based on I L j I , 
yielding a refreshed bit index sequence j1, j2, . . .  ,jn, where 

1£·1>1£·1> .. ·>1£ · 1· Jl - ]2 - - Jn (4) 

Subsequently, a sorted received word can be written as 

1!..1 
= II (11_) = (YiuYh, · · · , yjJ, (5) 

where II is the permutation function. Applying the same 
permutation to the columns of G yields 

G' = II (G) = [Yiu Yh, . .  
· , Yinl· (6) 

The GE will be performed on G', reducing the first k columns 
of G' into weight-one and yielding a systematic generator 
matrix as 

(7) 

where columns gj1, g'h, ... , gjk form a k x k identity subma­
trix. Note that this process requires the first k columns of G' 
being linearly independent. Therefore, the above mentioned 
permutation needs to be adjusted to ensure this property and 
y

' should be updated accordingly. Without further mentioning, 
we assume that the first k columns of G' have been ensured 
with this property. Therefore, the first k positions in 11..' 
are called the MRIPs and their index set is denoted as 
T = {h, h, ... , jk}. 

Let f(o) denote the initial message corresponding to the 
first k positions of 1!_1, i.e., [_(o) = (Yiu Yh, ... , Yik ). The 
initial codeword candidate can be obtained by 

(8) 

where II-1 is the inverse of permutation function II. Let 
�(w) = (elw), e�w), ... , e�w)) E lF� denote a TEP that will be 
added to update [_(o), where w = 1, 2, ... , E�=l (1), and T 
denote the OSD order. Each TEP �(w) has at most T non-zero 
entries. Subsequently, test messages can be generated by 

[_(w) = [_(0) + �(w). (9) 

The corresponding codeword candidate can be generated by 

(10) 

where �(w) = (clw), c�w), ... , c�w)) E lF� is the codeword 
candidate w.r.t. the TEP e(w). Let us further define the 
correlation distance betwee; 11_ and �(w) as 

V(1!_,�(w)) � L ILjl· 
j:yjf.C�w) 

(11) 

If a codeword candidate �(w) yields a smaller correlation 
distance with 11_, it is more likely to be the transmitted 
codeword. Hence, among all the codeword candidates, the 
one that yields the smallest correlation distance with y will 
be selected as the decoding output and denoted as �pt-:-

Ill. REDUCED COMPLEXITY ORDERED STATISTICS 

DECODING 

This section introduces the proposed reduced complexity 
OSD. In order to utilize more information and facilitate the 
decoding, a validation band is first introduced for the ordered 
reliability sequence. With this, the validation rule is further 
proposed to skip the generation of unpromising codeword 
candidates. 

A. Validation Band 

With the sorted received word y
' of (5), let us first define 

r = {j1, j2 ,  ... , j �'} as the index set of its IL most reliable 
positions, where 0 ::; IL::; n- k. Note that if IL = 0, r = 0. 
Our research statistics has shown that these coded bits have an 
extremely high probability to be error-free, especially when 
/L is small. Hence, these /L most reliable positions form a 
validation band, which is denoted as VB. It will be utilized 
to identify the unpromising codeword candidates. Note that 
length of the VB can significantly affect the complexity 
of the proposed OSD and its trade off with the decoding 
performance. More details on this will be provided in the 
Section IV. 

With the above mentioned VB, the MRIPs that determine 
the systematic generator matrix should be adjusted accord­
ingly. Different from the conventional OSD [2], the GE will 
be performed on the permuted generator matrix G', reducing 
columns Yi�+1, Yi�+2, ... , Yi�+k into weight-one and yielding 
a systematic generator matrix as 

(12) 

where columns g3'! , g311 , • • •  , g3'! form a k x k i-�+1 �+2 �+k 
dentity submatrix. Note that we also assume columns 

II II II h b d 'th th 1' 1 gi�+1, gi�+2, ... , gi�+k ave een ensure w1 e mear y 
independent property. Hence, the positions from /L + 1 to 
IL + k in y

' are called the RRIPs and denoted as 8 = 
{j�t+l, j�t+�· .. , j�t+k}· Let A = {j�t+k+l, j�t+k+2• ... , jn} 
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denote the remaining positions (RPs). For better illustration, 
the above mentioned index sets are shown in Fig. 1. 

r e A 
A A A 

y y 
Jl,J2, ... ,jl" I JM+l, ... ,jM+k I JM+k+l, ... ,jn 

I I I 
VB RRIPs RPs 

Fig. 1. Index sets of the proposed OSD. 

B. Validation Rule 

After determining the RRIPs, the initial message f'(o) 

can be obtained accordingly, i.e., t'(o) = (Yj'"+P Y3'"+2-:. . .  , 

Y3'"+k ). Similarly, the TEP �(w) = (eiw), e�w), ... , ekw)) ElF� 
will be added to t'(o) and generate the test message t'(w) as 

t'(w) = t'(O) + 
�(w). (13) 

The corresponding codeword candidate r;(w) 

... , c�w)) E lF� can be generated by 

where 

?;_<wl = rr-l(t'<wlc/'), (14) 

A(w) _ 

f'(w) 11 (15) cj -- . Yj. 

Note that with the statistic pro�erty of G", only the coded 
bits of the VB and RPs, i.e., ct) and j E {r u A}, need to 
be further determined in this re-encoding process. Based on 
the above analysis, we know that the received bits in the VB, 
i.e., y3 and j E r, have an extremely high probability to be 
error-free. Therefore, coded bits c}w) and Vj E r should have 
a high priority to be validated as below. 

Validation Rule : In the re-encoding process, the coded bits 
in the VB are prioritized to be estimated by (15). If the coded 
bits in the VB satisfy 

t'(w) 
· g'j = Y3, Vj E r, (16) 

the re-encoding process will continue and the coded bits in 
the RPs will be further determined by (15). Otherwise, the 
test message t'(w) will be considered as not able to generate 
a promising codeword candidate. and it will be discarded. 

In the proposed OSD, only the test messages that satisfy 
the validation rule as in (16) are utilized to generate the 
codeword candidates. It is proposed by assuming that there 
is no error in the J-L most reliable positions of '!!_· It helps 
eliminate some unpromising test messages and the generation 
of the codewords. Summarizing the above description, the 
proposed OSD is shown below as in Algorithm 1. 

IV. PERFORMANCE ANALYSIS 

This section characterizes the error distribution of the 
ordered reliability sequence. The decoding error probability 
upper bound of the proposed OSD will then be derived. 

Algorithm 1 Reduced Complexity OSD Algorithm 
Input: r_, J-L, T; 
Output: �pt; 

1: Compute the LLRs as in (2), and determine y; 

2: Define VB, RRIPs, and determine t'(o); 
-

3: Perform the GE to generate G"; 
4: For each TEP �(w), do 
5: Generate test message as in (13); 
6: H the test message satisfies (16) 
7: Generate the codeword candidate as in (14); 
8: Include it in the decoding output list; 
9: End for 

10: Select �t from the decoding list based on (11); 

A. Error Distribution of the Ordered Reliability Sequence 

For simplicity, given a sequence � = (zb z2, ... , zn), we 
use [�] � to denote the subsequence of with entries indexed 
from a to b, i.e., [�]� = (za, Za+b ... , Zb), where 1 :::; a < 
b ::=; n. Without loss of generality, given an ( n, k) binary 
linear block code, let us assume that the all-zero codeword 
is transmitted using BPSK modulation. Therefore, the cor­
responding modulated symbol vector is � = (1, 1, . . .  , 1). 
Over the AWGN channel, the received symbol vector is 
r_ = (rb r2, ... , rn) E !Rn, where Tj = 1 

+ 
Wj, Vj. Due to 

the statistically independent property of the AWGN w3, the 
probability distribution function (pdf) of the received symbol 
r3 is given by 

1 (u-1)2 
fri(u) = '-1\Te- No . (17) 

y7rNo 
With BPSK, LLRs defined in (2) can be further simplified into 
L3 = 4r3jN0, Vj.lt indicates that with a given signal-to-noise 
ratio (SNR) 'Y = 2/N0, r3 can be considered as a scaled LLR. 
In the following analysis, we define X = (Xl, X2, ... , Xn), 
where Xj = I r j I , as the reliability se(iUence of the received 
symbols. The pdf of X3 is given by 

if u < 0; { 0, 
fx.(u) = 1 _(u+1)2 _ (u-1)2 

3 -- ( e No + e No ) ...;7rNO ' if u � 0. 
(18) 

The cumulative distribution function ( cdf) of x3 can be further 
derived as 

{ 0, if u < 0; 
Fxj(u) = 

1- Q(�)- Q(____!!=L_) if u > 0 
.,fNo12 .,fNo12 ' - ' 

(19) 
where Q(u) = fuoo J; exp (- v;) dv is the standard normal 
tail function. 

Let x,_' = (X� , X�, ... , X�) denote the ordered reliability 
sequence. It is obtained by sorting entries of x in a decreasing 
order, i.e., X� � X� � · · · � X�· Since the unsorted reliability 
sequence x,_ is independent and identically distributed (i.i.d.), 
with the multinomial distribution, the pdf of the jth ordered 
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reliability xj can be further derived as [12] 

f.xj (u) = (j - 1)7�n - j)! ·(1-FXi (u))i-1 
FXi (u)n-j fxi (u) .  

(20) 
Similarly, the joint pdf of the ordered reliabilities x� and x� 
can be obtained by 

fx� ,x� ( u, v) n! 

(21) 
where u � v. Note that in the case of u < v, x� < x� and 
fx� .x�(u, v) = 0. 

Lemma I ( [5 ]): Let random variable E� denote the number 
of errors in [y'] �. Conditioning on the ordered reliability 
X�-1 = u and X�+1 = v, respectively, the probability that 
the ordered reliabilities subsequence [x'] � results in >. errors 
in the hard-decision subsequence [1l_']fis 

(b - a +  1) A b-a+1-A PE�(>. I u, v) = >. p(u, v) (1 - p(u, v)) , 
(22) 

where 

( ) Q(�) - Q(�) 
p u, v = Q(--.};g) - Q(�) 

+ 
Q(�) - Q(�) 

(:l3) 
is the probability that the arbitrary ,Bth ordered reliability x� 
results in an error in [1l_']�. where u � x� � v. 

Proof" With X�-1 = u and x�+1 = v, components in the 
ordered reliability subsequence [�'] � satisfy 

u � X� � X�+I � · · 
· � X�-1 � X� � v. (24) 

Since x' is obtained by ordering x. the b - a + 1 ordered 
reliability components in [�']� correspond to the b - a + 1 
unsorted reliability components in � uniquely, i.e., 

u � X�a � X�a+1 � · 
· 

· � X�b-1 � X�b � v. (25) 

For an arbitrary x�� = lr�� 1. where a :-::; ,B :-::; b and u � 
x�� � v, the probability that the reliability component x�� 
results in an error is given by 

Pr( -u :-::; r�� :-::; -v) p(u v) - (26) ' - Pr(-u :-::; r�� :-::; -v) + Pr(v :-::; r�� :-::; u) 
Based on (17), the probability p( u, v) can be further derived 
as 

( ) Q(�) - Q(�) 
p u, v = Q(--.};g) - Q(�) + Q(�) - Q(�) .  

�L-7) 
Therefore, under the conditions of the ordered reliability 
components X�-1 = u and x�+1 = v, the probability that 
the ordered reliabilities subsequence [�'] � results in >. errors 
is given as in (22). • 

Theorem 2( £5]): Given the joint pdf fx� .x�(u, v) of (21) 

and the conditional probability function p Eb ( >. I u, v) of (22), 
when 1 < a < b < n, the probability mas� function p Eb ( >.) 
� � b 

a 

PE�(>.) = 100100 PE�(>. I u, v)fx�-l 'x�+1(u, v)dvdu, 
0 0 

(28) 
where 0 :-::; >. :-::; b - a + 1. 

Proof" Based on the Bayes' theorem, PEb (>.) can be 
derived by integrating (22) over u and v with f x� .x� ( u, v) . 
Note that, u and v are values of the ordered reliabilities X�-1 
and x�+1• Hence, (28) holds for the case of 1 < a < b < n . 

• 
Theorem 3( £5]): Given the pdf fx' (u) of (20) and the 3 

conditional probability function p Eb ( >. I u, v) of (22), when 
b < n, the probability mass functio� p Eb ( >.) of Et is 1 

{00 (b) A b A PE�(>.) = 
Jo >. p(oo, v) (1 - p(oo, v)) - fx�+1 (v)dv, 

(29) 
where 0 :-::; >. :-::; b. 

Proof" With X�+I = v, components in the ordered 
reliability subsequence [�'Jt satisfy 

X� � x; � · · 
· � X�-1 � X� � v. (30) 

Similar to the analysis of (25), they uniquely correspond to 
the b unsorted reliability components in X· For an arbitrary 
component in the ordered reliability subsequence [x'] t ,  it has 
the average error probability p( oo, v) . Hence, p Eb T>.) can be 1 
derived by integrating p Eb ( >. I oo, v) over oo and v with 1 
fx�+1 ( v ). 

• 
B. Decoding Performance Analysis 

With the above analysis, we can further derive the decoding 
error probability upper bound of the proposed OSD. 

Corollary 4: Let Pust (J.t, T) denote the probability of the 
transmitted codeword not seizing included in the decoding 
output list, after the reprocessing with the VB of length J.t 
and a decoding order T, Pust(J.t, T) can be obtained by 

r 
Pust(J.t, T) = 1- PE�'(O) · """"' PE�'+k(>.) .  (31) 1 � 1'+1 A=O 

Proof" Let PRRIPs ( T) denote the probability that the 
number of errors in the hard-decision sequence indexed by 
the RRIPs is not greater than T. Let PVB (J.t) further denote 
the probability that hard-decision sequence has no error in the 
VB, i.e., [1l_']i. Based on the description of Section III, if the 
number of errors in the hard-decision sequence indexed by 
the RRIPs is not greater than T and [1l_']i has no error, the 
transmitted codeword will be included in the decoding list 
with a VB of length J.t and a decoding order T. Therefore, 
Fhst(J.t, T) depends on both .Pruur>s(T) and PvB(J.t), i.e., 

Pust(J.t, T) = 1 - .Pruur>s(T) · PVB(J.t) . (32) 

Based on the analysis of Section lV.A, the probability 
PRRIPs ( T) can be obtained by Theorem 2 as 
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7" 
PRRIPs(T) = L PE"+k(A) 1'+1 >.=0 

= �( roo roo 
PE"+k(A I u, v)fx' x' (u, v)dvdu) .  � lo lo "+1 "' "+k+1 

>.=0 
(33) 

Similarly, the probability PVB (11) can be obtained by 
Theorem 3 as 

PVB(11) = PE"(O) = r00
(1 - p(oo, v))11-fx' (v)dv. (34) 1 Jo "+1 

• 
Based on the analysis of [2], let Pe,osn(l1, T), and Pe,ML 

denote the error probability of the proposed OSD with a VB 
of length 11 and a decoding order T, and the ML decoding error 
probability, respectively. The error probability of the proposed 
OSD is upper bounded by 

Pe,OSD (11, T) :S Pe,ML + Pust (11, T) .  (35) 

Note that Pe,ML primarily depends on the minimum Hamming 
distance and the number of minimum-weight codewords. If 
Pust(l1, T) « Pe,ML· a near-optimal decoding performance can 
be obtained [10]. Therefore, Pust(l1, T) is regarded as a key 
indicator for the decoding performance. 

l .E+O -.------,...---,...---,...---,...---,...-----, 

l .E-1 

";::' _i l .E-2 -

l .E-3 - ,------e---Jl-�-Oc-,-T-�-c-2-, e-q-. (--c3"""C"1 )
-, 

--8-·JI � 0, T� 2, simulation 

l .E-4 - -&-Ji � 2, T� 2, eq. (3 1 )  
- -o- - J1 � 2 ,  T �  2 ,  simulation 
----tr-J1 � 4, T� 2, eq. (3 1 )  
- -tr - J1 � 4, T �  2 ,  simulation 

l .E-5 -L.::::::=:::::::::::::::::::::::::::::�.:::::::::::::::=-.. _____ ____j 
1 .5 2 2.5 

SNR (dB) 

3 3 .5  4 

Fig. 2. The probability Etst(JL, r) in decoding tbe (63, 39) BCH code. 

Fig. 2 shows the probability Pust(l1, T) obtained by 
Corollary 4 for decoding the (63, 39) BCH code. The de­
coding simulation results of the code are also provided. It 
can be seen that Corollary 4 can accurately characterize the 
decoding performence of the proposed OSD. Moreover, by 
adjusting the decoding parameter, i.e., the VB of length 11 
and the decoding order T, the decoding performance can be 
traded with the decoding complexity. More simulation results 
will be provided in the Section V, shedding more insight on 
this aspect. 

V. SIMULATION RESULTS 

This section provides the numerical results on both the 
error-correction performance and complexity of the proposed 
reduced complexity OSD. 

A. Decoding Performance 

Fig. 3 shows the decoding frame error rate (FER) for the 
(63, 39) BCH code. The proposed OSD is parameterized by 
the VB length 11 and the decoding order T. Performance of 
the conventional OSD [2] and the BMA [9] are provided 
as comparison benchmarks. The BMA is parameterized by 
the control band length s and the decoding order T. The 
ML decoding performance was obtained from [13]. Our 
simulation results show that with the same decoding order, the 
performance of the proposed OSD can approach that of the 
conventional OSD. By increasing VB length 11. performance 
of the proposed OSD will only slightly degrade, which is 
consistent with the results of Fig. 2. The performance loss 
is incurred by the increased error probability in the VB and 
more errors might be introduced into RRlPs. Furthermore, 
Fig. 3 also shows that in decoding the (63, 39) BCH code, 
the BMA with a control band length of 4 and a decoding 
order of 1 performs almost the same as the proposed OSD 
with a VB length of 4 and a decoding order of 2. However, 
the proposed OSD would be simpler, as discussed below. 
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� "-- l.E-3 -
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Fig. 3. Decoding performance of tbe (63, 39) BCH code. 

B. Decoding Complexity 

5 

Table I compares the complexity of the conventional OSD, 
the BMA and the proposed OSD in decoding the (63, 39) BCH 
code. Since the GE is required by all decoding algorithms, for 
a more intuitive comparison, we only measure the average 
number of binary operations and floating point operations 
in the decoding process except the GE. The cardinalities of 
the decoding output lists are also presented as the supporting 
evidence. Also referring to Fig. 3, while achieving the near­
optimal performance, the proposed OSD exhibits a significant 
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TABLE I 
COMPLEXITY IN DECODING THE (63, 39) BCH CODE 

Algorithms 
Complexity Output 

Binary oper. Floating oper. list 

OSD (r = 1) 4.19 X 103 5.14 X 102 40 

OSD (r = 2) 1.45 X 105 1 .09 X 104 781 

BMA (s = 4, T =1) 1 .66 X 104 1 .07 X 103 86 
Proposed OSD (J.L = 2, T = 2) 3.86 X 104 2.53 X 103 197 

Proposed OSD (J.L = 4, T = 2) 1.29 X 104 5.85 X 102 49 

Proposed OSD (J.L = 6, T = 2) 6.66 X 103 1.47 X 102 14 

complexity advantage. On the one hand, with increasing VB 
length, the decoding output lists reduces significantly, result­
ing in a low complexity compared with the conventional OSD. 
On the order hand, compared with the BMA, when achieving 
almost the same decoding performance, the proposed OSD 
yields a lower decoding complexity. Unlike the BMA, the 
proposed OSD does not require the additional storage, being 
more implementation friendly. Moreover, by adjusting the 
decoding parameter, i.e., the VB length J.t and the decoding 
order T, a trade off between the decoding performance and 
complexity can be achieved. 

VI. CONCLUSION 

This paper has proposed a reduced complexity OSD al­
gorithm for linear block codes. By identifying a validation 
band in several most reliable positions, the generation of 
the unpromising codeword candidates can be eliminated, 
resulting in a low decoding complexity. The decoding error 
probability upper bound of the proposed OSD has also been 
analyzed. Simulation results have been provided to validate 
the complexity advantage of the proposed OSD. 
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